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Fig. 1: Window-based Model vs. Streaming Model. The proposed streaming model reduces model size and can be activated on
demand to deliver immediate inference over the data stream, thereby lowering latency and improving real-time performance.

Abstract— Gesture recognition in resource-constrained sce-
narios faces significant challenges in achieving high accuracy
and low latency. The streaming gesture recognition framework,
Duo Streamers, proposed in this paper, addresses these chal-
lenges through a three-stage sparse recognition mechanism,
an RNN-lite model with an external hidden state, and spe-
cialized training and post-processing pipelines, thereby making
innovative progress in real-time performance and lightweight
design. Experimental results show that Duo Streamers matches
mainstream methods in accuracy metrics, while reducing the
real-time factor by approximately 92.3%, i.e., delivering a
nearly 13-fold speedup. In addition, the framework shrinks
parameter counts to 1/38 (idle state) and 1/9 (busy state)
compared to mainstream models. In summary, Duo Streamers
not only offers an efficient and practical solution for streaming
gesture recognition in resource-constrained devices but also lays
a solid foundation for extended applications in multimodal and
diverse scenarios. Upon acceptance, we will publicly release all
models, code, and demos.

I. INTRODUCTION

Real-time gesture recognition in complex environments
remains a significant challenge, especially on resource-
constrained devices. With the widespread adoption of wear-
able devices, mobile terminals, and smart home systems,
gesture recognition has become a key interface in hu-
man–computer interaction. However, systems often need to
rapidly capture and recognize gestures under limited hard-
ware resources and stringent power constraints, making it a

pressing issue to balance accuracy, model size, and real-time
inference.

Window-based gesture recognition algorithms have made
significant progress over the past decade; by continuously
sliding a window across sequential frames, they perform
feature extraction and classification, and thus exhibit stable
performance on pre-segmented datasets [25]. However, when
employed for real-time streaming inference, the frequent
model invocation and the processing of numerous redundant
frames lacking valid gestures can result in significant compu-
tational overhead [42]. In response, researchers have begun
exploring “streaming methods,” which feed data into the
model in a continuous flow and require the model to generate
predictions in real time as the data stream progresses [46],
thereby eliminating the need for repeatedly buffering and
processing large historical windows. While such approaches
have garnered increasing attention in areas like network
communications [47] and financial transactions [2], they have
not yet been widely adopted for the real-time analysis of
physical actions such as gestures.

In the domain of gesture recognition, “streaming process-
ing” means the model must immediately generate predictions
as data arrive in real time, while avoiding the accumulation of
latency caused by redundant computations. This requirement
is even more critical for resource-constrained devices: if the
model is too large or needs to buffer excessive raw inputs,
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the resulting memory overhead and energy consumption
become prohibitive. Consequently, streaming methods give
rise to three core demands: 1) ultra-lightweight, 2) streaming
processing, and 3) ultra-low latency

The first two demands focus on controlling model size and
unnecessary computations, while the third emphasizes the
importance of early recognition for real-time applications.
With the continuing proliferation of wearable and mobile
applications, these requirements apply equally to both high-
performance devices and smaller-scale devices.

Against this backdrop, this paper introduces a new stream-
ing gesture recognition framework called Duo Streamers. By
adopting a simplified RNN-lite architecture and a three-phase
recognition mechanism, Duo Streamers significantly reduces
computational overhead without compromising accuracy, and
supports continuous, immediate processing of streaming
inputs. Compared to traditional approaches, this design is
better suited for scenarios with sparse gesture occurrences:
during idle periods, the system only needs to maintain
minimal-power monitoring, and once a gesture is detected,
it allocates its main computational resources to recognizing
the key information—thus substantially reducing the overall
burden. Additionally, Duo Streamers incorporates specialized
training and post-processing pipelines, enabling direct train-
ing on pre-segmented datasets as a streaming model, while
dynamically coordinating and adapting the framework during
inference for further performance enhancements. As a result,
Duo Streamers not only achieves extremely low latency
on high-performance devices but can also be deployed on
edge devices with limited computational capacity, thereby
covering diverse interaction needs.

For experimental evaluation, we selected the SHREC2021
dataset [8] to validate the effectiveness of Duo Streamers.
The results show that, under various conditions (whether ges-
ture occurrences are frequent or extremely sparse), the frame-
work maintains stable performance. Compared with baseline
methods, Duo Streamers accelerates inference speed, reduc-
ing the real-time factor by approximately 92.3% (nearly a
13-fold speedup), while simultaneously shrinking parameter
counts to 1/38 in idle states and 1/9 in busy states.

In summary, to implement streaming methods and over-
come real-time challenges in gesture recognition, our work
presents three main innovations:

1) Three-Stage Sparse Recognition Mechanism: The
framework comprises an ultra-lightweight binary de-
tector, an ultra-lightweight multi-class recognizer, and
a Euclidean analyzer. Through task division and inter-
action among these components, computational loads
are distributed more evenly, significantly reducing re-
dundancy during idle frames.

2) Stream-Based RNN-lite Model: By storing critical
temporal information in a highly compressed external
hidden state, our method achieves both a lightweight
design and robust sequential modeling. Both the De-
tector and the Recognizer within the framework utilize
this architecture.

3) Innovative Model Training and Post-Processing

Pipeline: We devise both a streaming training pipeline
and a post-processing pipeline tailored to the de-
mands of training and deployment, ensuring that Duo
Streamers adapts to diverse data sources and delivers
additional performance gains after training.

II. RELATED WORK

In application scenarios such as virtual reality (VR) and
augmented reality (AR), gesture recognition systems must
capture and interpret gestures on edge devices as quickly
as possible [30], [35]. This stringent real-time requirement
arises not only from limited power and computing resources,
but also from the need to simultaneously handle tasks such
as spatial localization, motion tracking, and multi-channel
interaction [39]. If the recognition process is delayed until
after the gesture ends, users may experience discomfort, and
the immersion and fluidity required for VR/AR interaction
will be compromised [36]. Consequently, achieving stable
real-time gesture recognition on these edge devices has
become a pressing technical challenge. The following content
briefly reviews algorithmic designs in the field of gesture
recognition and extends to relevant real-time research.

A. Deep Learning in Gesture Recognition

Many technologies introduced from other domains into
gesture recognition often overlook custom optimizations for
edge devices and continue to rely on generalized model
designs and neural network architectures. A common practice
is to adopt window-based methods for processing contin-
uous input [20], where raw frames are stacked over a
certain time span to capture contextual information along
the temporal dimension [20], [22]. However, an excessively
large window significantly increases model size and latency,
while a window that is too small fails to provide sufficient
temporal context; frame-based approaches, as an extreme
case (window size of 1), are nearly incapable of recognizing
dynamic gestures [8]. Moreover, for VR/AR devices requir-
ing high-frequency interaction, pixel-based sliding window
approaches impose additional costs for buffering raw video
data, and this burden is projected to expand further with
the advent of next-generation ultra-high-definition standards
such as 8K.

At the algorithmic level, existing research primarily con-
centrates on CNN, LSTM, Transformer, and GNN architec-
tures [40]. While CNNs offer automatic feature extraction
and often involve fewer parameters, convolutional operations
can be time-consuming [45]. LSTMs excel at capturing
temporal dependencies but typically rely on larger parameter
sets [18]. Transformers can model long-range dependencies
and allow parallel computation, yet their computation re-
mains considerable when handling linear, streaming inputs in
real-world scenarios [13]. GNNs are suitable for modeling
skeletal data but demand manually designed preprocessing
and graph generation pipelines, making direct adaptation
to diverse settings challenging [24]. Consequently, most of
these methods still require multiple frames to be accumulated



within a window for stable training and inference, falling
short of the real-time requirements on edge devices.

Another challenge for real-time recognition lies in the
need to repeatedly invoke the model on the input stream
[29], [41]. When gestures are sparse and irregular, window-
based recognition systems must frequently perform inference
to align with potential incoming gestures [8], which boosts
recall but also raises false positive rates. To suppress false
positives, some window-based approaches introduce lengthy
“ignore periods” [8], resulting in delayed recognition or
even missed detections and conflicting with low-latency
requirements. In scenarios demanding high recall, relying
heavily on windows and frequent model invocation creates
a dilemma between latency and accuracy.

In recent years, to balance performance and real-time
needs, researchers have integrated deep learning with various
data sources by leveraging ultrasound [34], [6] or elec-
tromyography (EMG) [19] as event-driven inputs to support
recognition, or adopting knowledge distillation, quantization,
and pruning to deploy lightweight models [6]. Meanwhile,
some studies focus on the robustness of actual deploy-
ments—considering factors such as environmental lighting,
background complexity, and user variability [28], [37]—and
employ adaptive or transfer learning [43], [36] to maintain
accuracy and real-time performance. Overall, deep learn-
ing methods have already demonstrated strong capabilities
in gesture recognition, including CNNs for visual feature
extraction and LSTMs for capturing temporal dependencies
[23], [43]. Key directions for further improvement include
multi-stream architectures [32], [44], [4], lightweight designs
[6], [19], and adaptive technologies [28], [1]. Nonetheless,
in high-interaction yet resource-constrained scenarios like
VR/AR, it remains necessary to further reduce latency, power
consumption, and storage requirements.

B. Streaming Model

Streaming methods prioritize real-time performance and
have been extensively studied in areas such as speech recog-
nition and autonomous driving, offering important references
for gesture recognition. Unlike batch-based approaches,
streaming models aim to produce predictions immediately
upon data arrival, significantly reducing latency and enabling
continuous online inference [14], [27], [21].

In speech recognition, the Recurrent Neural Network
Transducer (RNN-T) has been specifically optimized for
low-latency scenarios by processing inputs incrementally,
eliminating the need to wait for the complete sequence
before generating outputs [15]. Some variants of RNN-T
also introduce boundary-aware training strategies that restrict
the evaluation scope to key regions, reducing computational
overhead and improving speed [3]. Meanwhile, in stream-
ing Attention Encoder-Decoder (AED) models, a technique
known as monotonic attention sequentially focuses only on
the relevant parts of the input, thus reducing repeated access
to earlier segments and lowering computational load and
latency [10].

In the field of autonomous driving, some studies have
adapted existing mature visual recognition schemes to im-
plement streaming models. For instance, multispectral pedes-
trian detection based on the YOLOv4 architecture leverages
lightweight design to achieve efficient computation and low
latency [33]. In addition, for efficient motion prediction,
researchers have introduced a simplified Transformer ar-
chitecture—reducing pre-training complexity and combining
simple linear and Transformer layers to shorten prediction
time and cut resource consumption [31].

Similar approaches are gradually being applied to gesture
recognition [23], [12], where models can parse incoming
frames continuously upon data arrival, eliminating the need
to wait for a full window and thus outputting predictions
with minimal delay. Once integrated with lightweight neural
networks or incremental learning techniques [5], [27], [21] at
the system level, this method may overcome the high-latency
bottleneck of traditional batch-based inference. Moreover,
tree models (e.g., Hoeffding trees), online linear models [27],
and adaptive ensemble approaches can handle concept drift in
dynamic environments. Finally, incorporating physiological
signals [34], [6], [19] or multimodal information [32], [44],
[38] may further enhance overall performance while enabling
early recognition.

III. DUO STREAMERS

A. Stream-Based RNN-lite Model

Our framework redesigns certain mechanisms of the RNN
architecture to overcome the limitations of mainstream ges-
ture recognition models that rely on high-performance GPUs
and cannot be easily deployed on edge devices for streaming
recognition. Merely improving computational efficiency does
not suffice; the model itself must be small enough to be truly
suitable for edge devices.

To this end, we propose a novel RNN-lite architecture. By
storing temporal information in a highly compressed external
hidden state, this architecture no longer retains large amounts
of sequence-related weights—only those needed to process
the current input:(

h(ext)
t

)
= RNNLITE

((
h(ext)

t−1

)
, xt ; Θ

)
. (1)

RNNLITE represents the same state-update equations as
a conventional RNN. However, its inputs and outputs are
now explicitly defined as the external variables

(
h(ext)

t−1

)
. In

contrast to other frame-level models that aim solely for
low latency, our framework continues to capture temporal
information through an external hidden state that specialized
components maintain in real time. Moreover, because the
external hidden state is readily accessible and the model does
not buffer raw inputs, the system can output results immedi-
ately without waiting for the gesture to finish or the window
to be filled, thereby structurally enabling early recognition.
Ultimately, this RNN-lite architecture reduces the parameters
required for inference to as low as one-ninth (during high
activity) to one-thirty-eighth (during idle periods) of the



baseline model, thus supporting unified deployment across
multiple platforms.

B. Three-Stage Sparse Recognition Mechanism

Gestures commonly used in interactive devices can range
from as few as a dozen frames to as many as one or two
hundred frames, and they are sparsely distributed among data
streams containing thousands of frames. In real-world sce-
narios, this sparsity can be even more pronounced, meaning
that most inputs in a continuous stream are invalid gesture
frames—imposing a high resource burden on edge devices
that must remain on standby.

To address this sparsity, the Duo Streamers framework
does not continuously run a large model. Instead, it uses a
Euclidean Analyzer and a small binary classification model
(the Detector) to determine whether new inputs appear and
whether they are valid. Once valid input is detected, the
Detector awakens the dormant gesture recognition model (the
Recognizer) and puts it back to sleep when appropriate. By
decomposing what would otherwise be handled by a single
large model, this approach saves substantial computational
resources in streaming scenarios.

Concretely, we design a three-stage sparse recognition
mechanism that allows each component to work efficiently,
with clear division of labor yet close coordination:

1) Euclidean Analyzer Stage: The raw data stream is first
processed by the Euclidean Analyzer, which captures
certain joints over serval historical frames and contin-
uously monitors abrupt changes in those joints:

d̄near(t) =
1
N

N

∑
k=1

∥∥ jt − jt−k
∥∥, (2)

d̄far(t) =
1
M

N+M

∑
k=N+1

∥∥ jt − jt−k
∥∥, (3)

if
d̄near(t)
d̄far(t)

> α then h(ext)
t ← 0. (4)

By directly gates the external hidden state, this compo-
nent ensures that the Detector is adequately prepared.

2) Detector Monitoring Stage: As the data stream flows
in continuously, the Detector is always running and
listening for valid gestures. When no valid gesture
is detected, it carries out minimal computation, con-
serving overall computational resources and energy.
As soon as a valid gesture is identified, the Detector
immediately activates the Recognizer.

3) Recognizer Recognition Stage: Once sparse valid ges-
ture data enters the framework, the Recognizer starts
working, while the Detector takes on an additional
task—gating the external hidden state updated by the
Recognizer to ensure the correct recognition of the
current gesture and potential gesture switching. Even-
tually, once the valid gesture ends, the Detector puts
the Recognizer back to sleep and returns to its original
monitoring mode, awaiting the next sparse recognition
event.

By employing this three-stage sparse recognition, we
eliminate the need for traditional sliding windows to re-
peatedly invoke large models on consecutive idle frames.
Simultaneously, our stream-based RNN-lite model can focus
on critical frames, achieving efficient and accurate real-time
recognition.

C. Training and Post-Processing Pipeline

To complement the streaming framework, we developed
new training and post-processing pipelines that enable Duo
Streamers to be directly trained as a streaming model on
commonly used pre-segmented datasets, and further enhance
performance at inference through adjustable control mech-
anisms. Both the Detector and the Recognizer adopt an
RNN-lite structure and maintain their own external hidden
states. They share the same training procedure: an outer loop
sequentially loads each segment, resetting the external hidden
state and gradients at the start of every iteration; an inner
loop then processes frames one by one and accumulates
gradients. After processing an entire segment, the outer loop
computes a weighted average gradient and updates the model
weights. By performing backpropagation on a per-frame
basis, the training pipeline introduces optimizations geared
toward early recognition:

L (Θ) =
1
N

N

∑
n=1

Tn

∑
t=1

CE
(
ŷn,t , yn,t

)
, (5)

L (Θ) =
1
N

N

∑
n=1

Tn

∑
t=1

w(t)CE
(
ŷn,t , yn,t

)
, (6)

On the other hand, in the actual post-processing pipeline,
the framework introduces several coefficients for additional
performance improvements during deployment:
• A Detector-to-Recognizer activation threshold
• A Detector-to-Recognizer deactivation threshold
• A minimum waiting time coefficient for the Detector to

actively reset the Recognizer’s external hidden state
• A Euclidean Analyzer sensitivity coefficient for detect-

ing finger movement
These coefficients affect the recall rate and false alarm

rate. They can be flexibly configured to meet different task
requirements or applied using robust default values.

In summary, we present three major innovations to ful-
fill the requirements for streaming gesture recognition.
While maintaining comparable performance, we substantially
reduce model size and latency, thus enabling streaming
data processing and achieving low-latency, real-time gesture
recognition across diverse devices.

IV. EXPERIMENTS AND RESULTS

In this section, we first present the implementation details
of the Duo Streamers framework, including its core model
structures, training procedure, and the hardware used. Next,
we describe the dataset employed in our experiments and
introduce multiple baseline models for comparative analysis.
Finally, we present our results on a series of metrics assessing
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Fig. 2: Our proposed RNN-lite streaming model and its three-stage sparse recognition mechanism. The skeleton stream
first passes through the Euclidean analyzer and the Detector’s gated external hidden state, continuously monitoring for the
presence of valid gestures. Once a valid gesture is detected, the dormant gesture recognition model (Recognizer) is awakened,
and during this active phase, gating is applied to the Recognizer’s external hidden state. After the valid gesture concludes,
the Recognizer returns to its dormant state, significantly reducing computational overhead and energy consumption. By
storing temporal information in a compressed external hidden state and relying solely on the compact Detector for binary
classification during idle periods, the model substantially lowers its dependency on hardware resources. Ultimately, the
parameters required for inference are reduced to just one-ninth to one-thirty-eighth of the baseline model’s, enabling unified
deployment across multiple platforms while enhancing early recognition capabilities.

model accuracy, real-time performance, and size, and we also
conduct ablation studies to examine how each component
affects overall performance. Our experimental design aims
to validate the effectiveness of the three-stage sparse recog-
nition mechanism and the RNN-lite model architecture, as
well as to investigate how the framework’s post-processing
pipeline further influences performance—ultimately illustrat-
ing the superiority of Duo Streamers for real-time gesture
recognition on edge devices.

A. Implementation Details
We developed the Duo Streamers framework in PyTorch

and leveraged the TorchTNT library for training and evalua-
tion. During training, CUDA acceleration was enabled, and
the external hidden state was explicitly updated and reset
within the training loop to avoid excessive overhead; the
batch size was set to 256 to balance convergence speed and
generalization. For inference, all hardware acceleration was
disabled to simulate the sequential processing of streaming
data on resource-constrained devices, thus verifying whether
the model can sustain real-time performance. During train-
ing, we used the Adam optimizer with a learning rate of
0.001 and gradient clipping (restricting the gradient norm to
1.0), and we employed an exponential learning rate scheduler
with a gamma value of 0.9 to speed up convergence. On
the SHREC2021 dataset, the Recognizer was trained for
300 epochs, and the Detector was trained for 100 epochs.
Additionally, the Euclidean Analyzer does not include any

neural network components; its parameters were manually
tuned on multiple sequences randomly selected from the
training set.

1) Model Architecture: The Duo Streamers framework
comprises two neural network models—Detector and Rec-
ognizer—each equipped with an external hidden state for
maintaining temporal information and enabling lightweight
inference. On the data stream, a front-end component called
the Euclidean Analyzer detects significant hand displace-
ments and continuously gates the Detector’s external hidden
state. Once a valid gesture is identified, the Detector wakes
the Recognizer and actively gates its external hidden state to
enable accurate classification.

• Recognizer: Formed by three linear layers combined
with an external hidden state, functioning similarly
to a three-layer RNN. It processes incoming frames
sequentially and stores historical context in the external
hidden state, with a dropout rate of 0.2 applied after
each linear layer to improve generalization. This design
substantially reduces the overall model size while pre-
serving temporal modeling capabilities.

• Detector: Employs a single-layer structure along with
an external hidden state to decide whether to activate or
deactivate the Recognizer, while also gating the Recog-
nizer’s external hidden state. The Detector focuses on
identifying valid gestures and minimizing power con-
sumption during idle frames. Notably, our experiments



(a) SHREC 2021 skeletal streams (b) Camera-based skeletal streams

Fig. 3: System logs as it processes data from the SHREC 2021 dataset and camera-based skeletal streams. The left figure
presents the detection–recognition outputs and the ground truth, where differently colored dashed lines indicate the confidence
of each gesture over time (in seconds), ranging from 0 to 1. The right figure illustrates how the model performs real-time
streaming data processing on camera inputs. Given that camera data are pixel-based, we first utilize the Mediapipe library to
generate hand keypoint skeleton streams, which are then fed into our framework. The logs indicate that the model balances
early recognition with accuracy across various gestures, demonstrating strong adaptability and effectiveness in real-time,
high-frequency interactive scenarios. Relevant video content for visualization can be found in the supplementary materials.

indicate that replacing this single-layer structure with a
single-layer LSTM (processing skeletal data recurrently)
can significantly enhance the Detector’s ability to delin-
eate valid gesture boundaries.

2) Hardware: We conducted all training experiments on
Google Colaboratory using an NVIDIA L4 GPU for accel-
eration. During inference, we switched to a CPU platform
to simulate typical edge or embedded device conditions.
Owing to the compact design of the Detector and Recognizer,
coupled with the three-stage sparse recognition mechanism’s
efficient allocation of computational resources, Duo Stream-
ers still achieves a satisfactory level of real-time performance
under these conditions.

B. Datasets

The SHREC2021 dataset contains 180 skeletal gesture
sequences recorded in natural environments, with 110 se-
quences for training and 70 for testing, covering a total of 17
gesture categories [8]. No preprocessing operations—such as
normalization, standardization, or denoising—were applied.
One key advantage of the Duo Streamers framework is that
it can be trained directly on batch-processed data while still
performing streaming inference, thereby simplifying the data
preparation process.

C. Baseline Models

To validate the effectiveness of the Duo Streamers frame-
work for gesture recognition tasks, we selected three models
highlighted in the SHREC2021 paper as our primary base-
lines: a frame-based CNN model [8], a window-based model
adopting a Transformer architecture [8], and a window-based
model employing GRU/LSTM modules [8].

We chose these models for three main reasons: (1) CNN,
RNN, and Transformer architectures encompass common ap-
proaches in gesture recognition, and we deliberately avoided
methods requiring extensive handcrafted preprocessing, en-
suring that our baseline models are both representative and
broadly applicable; (2) SHREC2021 provides complete com-
parative data for these three categories of models, making
it convenient for structured experiments and precise mea-
surements; and (3) although some new studies have reported
progress on this dataset since 2023, such advances typically
rely on additional pre-/post-processing steps or substantially
larger network sizes, rather than achieving breakthroughs
within these foundational frameworks, thus complicating any
rigorous performance comparisons.

Because SHREC2021 does not release the source code for
these baselines, we reproduced three representative models:
(1) a window-based lightweight hybrid model that uses a
CNN for feature extraction and significantly reduces the
parameter count while combining LSTM and residual mod-



ules [16]; (2) a window-based model adapted from the
SHREC2021-Transformer approach [8]; and (3) a window-
based, low-latency hybrid model derived from Gesture Spot-
ter, integrating LSTM and self-attention [40].

By conducting a parallel comparison of these baseline
models, we aim to demonstrate two points: first, that Duo
Streamers achieves accuracy metrics comparable to main-
stream frameworks; and second, that it significantly outper-
forms traditional solutions in terms of real-time performance
and model size, underscoring its potential viability for high-
interaction, resource-constrained scenarios.

D. Results on Evaluation Metrics

1) Online Gesture Recognition: For the online gesture
recognition task, we employed five metrics to evaluate model
performance. In particular, the Jaccard Index measures the
intersection over union (IoU) between the model’s predicted
gesture sequences and the ground truth in the time dimension
[7], while the Detection Rate determines whether the model’s
prediction is correct and achieves at least a 0.5 IoU with
the ground truth [8], [9]. The False Positive Rate is the
ratio of the number of incorrectly predicted gestures to the
total number of gestures for each category in the sequence
[9]. Model Parameters reflect the computational and storage
resources required during both training and inference [26].
Finally, the Real-Time Factor is the ratio of the actual time
taken to process the entire test set to the theoretical time,
where the latter is derived from the total number of frames
divided by the standard frame rate of 50 frames per second
[11], [17].

Further, we follow the standard procedure below to closely
approximate a real deployment environment and conduct a
unified evaluation of the models:

1) GPU acceleration is disabled.
2) Parallel processing of sequences is prohibited; the

model must process all sequences in order.
3) After processing each sequence, the model outputs

a list containing confidence scores, predicted gesture
positions, and predicted gesture categories.

As an accuracy metric outcome, detection rate, Jaccard
index, and false positive rate for different runs are summa-
rized in Table I. As shown in Table I, the Duo Streamers
framework still achieves accuracy levels comparable to the
baseline models under resource-constrained conditions.

Detailed experimental results concerning model size and
real-time performance metrics are documented in Table II
and Table III. Particularly, the Real-Time Factor is a critical
criterion for determining the model’s ability to operate in
real-time: a lower Real-Time Factor indicates that the model
can process inputs more quickly and can be deployed on
more lightweight devices. As indicated by the tables, the
Duo Streamers framework outperforms the baseline models
in real-time performance while significantly reducing model
size.

TABLE II: Comparison of the trainable parameter scale of
each model in the SHREC2021 online gesture recognition
task. The table lists the number of trainable parameters of the
three baseline models we reproduced and the Duo Streamers
proposed in this study. Among them, ”Duo Streamers (Ours)
- Idle” indicates the idle state parameter scale when the
system is mostly run by only the Detector and the Euclidean
Analyzer, and ”Duo Streamers (Ours) - Busy” indicates
the maximum parameter scale when the Detector and the
Recognizer are working at high frequency at the same time.

Model Trainable Parameters

CNN+LSTM+ResNet [16] 6,136,771
SHREC2021 - Transformer [8] 12,698,129
Gesture Spotter - LSTM+Attention [40] 27,759,633
Duo Streamers (Ours) - Idle 408,066
Duo Streamers (Ours) - Busy 1,800,723

TABLE III: Comparison of the real-time processing ca-
pabilities of various models in online gesture recognition.
The Real-Time Factor (RTF) measures the ratio between a
model’s inference time and the theoretical input sequence
duration. An RTF below 1 indicates that the model can
complete real-time inference at the standard frame rate.
Importantly, as gesture recognition algorithms are deployed
on a wide range of edge devices, a smaller RTF enables real-
time inference on more compact hardware. The table presents
three reproduced baseline models alongside our proposed
Duo Streamers, demonstrating that Duo Streamers delivers
superior real-time performance.

Model Real-Time Factor

CNN+LSTM+ResNet [16] 0.8335
SHREC2021 - Transformer [8] 1.0810
Gesture Spotter - LSTM+Attention [40] 0.5165
Duo Streamers (Ours) 0.0627

Additionally, the Duo Streamers framework achieved an
Early Detection Latency of 6.38 frames on the SHREC2021
dataset. This latency is shorter than the shortest gesture
length in the dataset, indicating that for most gestures, the
framework can return predictions in the early stages of
execution.

We experimented with different threshold settings in the
framework’s post-processing pipeline to examine their effects
on accuracy metrics. We found that a lower activation
threshold tended to increase the detection rate but could
potentially raise the false positive rate, whereas a higher
activation threshold helped reduce the false positive rate but
might lead to a decrease in detection rate.

For instance, with the Recognizer activation threshold
initially set to 0.45 and the deactivation threshold at 0.2, the
online recognition results yielded a detection rate of 0.7077
and a false positive rate of 0.6818. When the thresholds were
adjusted to a more stringent level—setting the activation
threshold to 0.8 and the deactivation threshold to 0.5—the
detection rate decreased to 0.6812 while the false positive
rate improved to 0.6012. Therefore, we recommend raising



TABLE I: Online Gesture Recognition on SHREC2021. The table presents detection rate, false positive rate, and Jaccard
index for various gesture recognition methods under different experimental runs. Frame-Based and Window-Based approaches
originate from different base models and their variants [8], whereas Stream-based (Ours) is the proposed streaming method.
The results show that, compared with conventional methods, the streaming model notably reduces model size and enhances
real-time capability while maintaining comparable accuracy.

Method Runs Detection Rate False Positives Rate Jaccard Index

Frame-Based (CNN) [8] mean ± std 0.4896 ± 0.0050 0.5469 ± 0.5377 0.3615 ± 0.1192

Window-Based (Transformer) [8] mean ± std 0.7060 ± 0.0212 0.3889 ± 0.1501 0.5422 ± 0.0650

Window-Based (GRU & TSGR) [8] mean ± std 0.7014 ± 0.0845 0.3044 ± 0.0348 0.5806 ± 0.0710

Stream-based (Ours)
Run 1 0.7076 0.6818 0.5356
Run 2 0.6971 0.6735 0.5248
Run 3 0.6812 0.6012 0.4863

TABLE IV: Ablation study of the key components in Duo
Streamers. Rows indicate the specific component removed
from the full framework. The results demonstrate the func-
tions and necessity of each module: the external hidden state
is responsible for capturing temporal information; The gating
mechanism maintains the external hidden state of the two
sub-models; The detector model continuously monitors the
stream for gesture inputs; removing this module leads to a
significant increase in the recognizer’s false positive rate.

Component Removed Detection Rate False Positive Rate

None (Full Framework) 0.7077 0.6818
External Hidden State 0.5694 0.6841
Gating Mechanism 0.0835 —
Detector Model — 0.9888

the activation threshold as much as possible, without incur-
ring excessive loss in detection rate, to better control false
positives.

2) Ablation Studies: To assess the contribution of indi-
vidual components within the Duo Streamers framework,
we conducted ablation experiments focusing on three key
elements:

1) External Hidden State: We evaluated the model’s
ability to capture temporal dependencies when the
external hidden state was removed.

2) Gating Mechanism: We investigated the impact on
overall performance in the absence of the control
mechanism for the external hidden state.

3) Detector Model: We examined how modifications
or removal of the Detector model affected the false
positive rate.

The results of these experiments are summarized in Ta-
ble IV.

3) Observations and Discussion: The Duo Streamers
framework demonstrates robust performance in online ges-
ture recognition tasks, highlighting its suitability for prac-
tical applications involving streaming data. Delving deeper,
ablation experiment results confirm that each component of
the framework makes a meaningful contribution to overall
performance. Overall, despite its ultra-lightweight design, the
Duo Streamers framework’s online recognition performance

is comparable to that of larger, more complex models, mak-
ing it particularly suitable for deployment on edge devices
or in environments with limited computational resources.

E. Limitation and Future Work

Despite Duo Streamers’ demonstrated ability to perform
real-time gesture recognition on resource-constrained de-
vices, some limitations remain. In complex scenarios, its
capacity to precisely identify gesture boundaries requires
further improvement, and additional field testing is needed
to refine the switching strategy among the three stages
while balancing sensitivity and power consumption on edge
devices. In the future, we plan to explore more real-time
applications and multimodal inputs—such as images, depth
data, and skeletal keypoints—and introduce adaptive post-
processing and meta-learning methods so that the system
can automatically fine-tune sensitivity coefficients and other
parameters after deployment. This approach will help extend
the ultra-lightweight design to more challenging interaction
modes.

V. CONCLUSION

Duo Streamers integrates a three-stage sparse recognition
mechanism, an RNN-lite streaming model, and a custom
training and post-processing pipeline to achieve real-time,
lightweight gesture recognition across multiple platforms.
In particular, the three-stage sparse recognition effectively
reduces redundant computation during idle frames, while
the external hidden state preserves contextual information
with minimal overhead. Meanwhile, the training and post-
processing pipelines designed for streaming applications en-
sure stable model performance in real-world settings. Experi-
mental results indicate that Duo Streamers achieves accuracy
comparable to mainstream methods on datasets collected
from real environments, while significantly reducing model
size and accelerating inference. Taken together, Duo Stream-
ers provides an efficient solution that balances accuracy and
portability, laying a solid foundation for the adoption of
gesture recognition in edge computing and wearable device
scenarios.
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